

Corals & Climate Adaptation Planning (CCAP) Project

Climate Change Working Group Report Out

Co-Chairs: Jordan West, EPA Office of Research & Development Britt Parker, NOAA Coral Reef Conservation

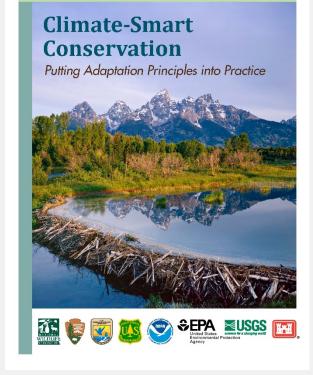
*The views expressed in this presentation are those of the authors and do not represent official policy of the US EPA or NOAA.

A Collaborative Effort of the Climate Change Working Group

- Co-funded by EPA, NOAA, DOI
- Guidance and steering from the CCWG
- Technical team expertise from EPA, NOAA, DOI, TNC, EcoAdapt and Tetra Tech
- Partnering with practitioners/managers and scientists from 13
 Federal, State, Territory agencies, local and national NGOs, academia
- Methods and tools to be hosted on the toolkit website of The Nature Conservancy's Reef Resilience Program

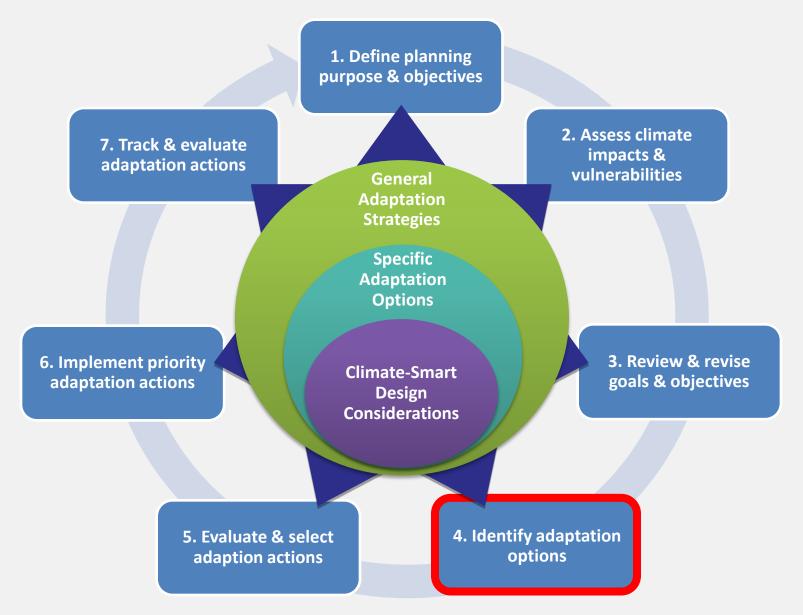
Project Inception

- Presidential Executive Order 13653 -- Preparing the United States for the Impacts of Climate Change (2013)
- President's State, Local, and Tribal Leaders Task Force on Climate Preparedness and Resilience (2014)
- General principles for adaptation to climate change (theoretical frameworks)
- Ongoing advances in assessment and planning by coral reef practitioners (real-world explorations)



Goal: tailor and test recent adaptation planning frameworks and methods specifically for coral reef management

Climate-Smart Approach


- Comprehensive review and synthesis of adaptation principles for ecosystem management
- Framework for integrating climate change information into every step of the management planning cycle
- General adaptation strategies to aid in brainstorming specific actions
- Rules for designing management actions to be "climate-smart"

Stein et al. (2014) http://www.nwf.org/ <u>ClimateSmartGuide</u>

CCAP Framework

CCAP Framework: Coral Reef Adaptation Options

CLIMATE SMART STRATEGIES, OPTIONS AND DESIGN CONSIDERATIONS FOR CORAL REEF MANAGEMENT						
General Strategies/Specific	Climate Smart Design Considerations					
Management Options						
REDUCE NON-CLIMATE STRESSES - Minimize localized human stressors that hinder the ability of species or						
ecosystems to withstand or adjust to climatic events						
i. Remove existing structures that harden	• How will sea level rise and changes in the intensity and frequency of large storms affect coastal hydrology and erosion?					
the coastlines to allow	• Given the above, which structures should be the highest priority for removal					
inland migration of sand	in order to allow more natural migration of sand and vegetation?					
and vegetation						

Rules for Climate-Smart Design

Two types of design considerations are required:

- How will climate change directly or indirectly affect how stressors impact the system?
- What are the implications of this information for the location, timing, or engineering design of the management action?

CCAP Framework


CLIMATE SMART STRATEGIES, OPTIONS AND DESIGN CONSIDERATIONS FOR CORAL REEF MANAGEMENT							
General Strategies/Specific	Climate Smart Design Considerations						
Management Options							
REDUCE NON-CLIMATE STRESSES - Minimize localized human stressors that hinder the ability of species or ecosystems to withstand or adjust to climatic events							
 Remove existing structures that harden the coastlines to allow inland migration of sand and vegetation 	 How will sea level rise and changes in the intensity and frequency of large storms affect coastal hydrology and erosion? Given the above, which structures should be the highest priority for removal in order to allow more natural migration of sand and vegetation? 						
PROTECT KEY ECOSYSTEM FEATURES - Focus management on structural characteristics, organisms, or areas that represent important "underpinnings" or "keystones" of the current or future system of interest							
 Manage functional species and groups necessary for maintaining the health of reefs and other ecosystems 	 What is the vulnerability of functional species and groups to the interaction of climate change with other human and natural stressors, and in what locations are they most vulnerable? What management options can be employed, and in which locations, to minimize impacts on the most vulnerable species and groups? 						
ENSURE CONNECTIVITY - Protect, restore, and create landscape features that facilitate movement of water, energy, nutrients and organisms among resource patches							
i. Identify and manage networks of resilient reefs connected by currents	 Which areas are historically or projected to be less exposed to climate change impacts such as increased sea surface temperature or increased surface water runoff and/or demonstrably better able to recover after exposure to these impacts? How will climate change affect currents that provide connectivity among these areas and the benefits connectivity provides (e.g., recruitment to reefs)? What are the implications of this information for design of managed area networks to maximize connectivity and maintain it into the future? 						

West Maui Case Study & Workshop

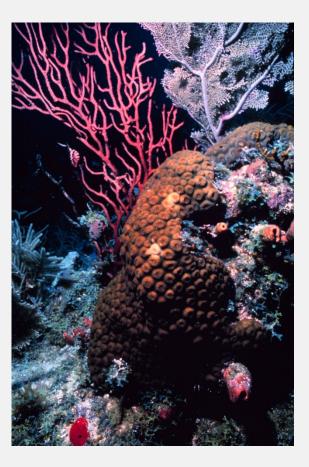
Why West Maui:

- Priority watershed of the State of Hawaii, NOAA CRCP and USCRTF
- Well organized management in place
- Existing plans provide good examples
- Climate change concerns have been identified

Purpose: to explore methods for Climate-Smart adaptation within the context of existing management planning

West Maui Case Study

Categories = Option Types from Table 4B (associated objectives in parentheses - see Appendix B for key).								
Run-off controls	Water treatment	Non-indigenous spp.	Fishing restrictions	Area based	Artificial shading	Transplantation		
	upgrades	removal		management				
Install water bars,	Treat stormwater	Remove non-	Improve	Protect/promote	Use artificial shading	Transplant coral		
terraces, microbasins, in	using a constructed	indigenous algal	enforcement of	recovery of areas of high	when corals are	reef organisms		
dirt roads in agricultural	wetland (WMP1,	species to preserve	fishing regulations	coral species diversity	exposed to thermal	among locations		
areas (WMP1, WMP2)	WMP2)	the integrity of coral	(H1, H3)	and cover using	stress, to protect	that are no		
		reef communities with		temporally flexible no-	coral sites of specific	longer connected		
		the super-sucker (H2,		use zones after extreme	importance from	by currents (H4)		
		H4)		events (H4)	coral bleaching (H4)			
Establish vegetative	Install curb-inlet		Enhance natural	Protect adjacent or				
cover, filter strips in	baskets to filter		recovery processes	nearby coral reef areas				
agricultural fields	hydrocarbon and		through	that are				
(WMP1, WMP2)	debris from the		replenishment of	hydrodynamically				
	storm drains		native grazers that	connected and can serve				
	(WMP1, WMP2)		control algal growth	as recruitment sources				
			on damaged reefs	for coral reefs in West				
			(H1, H3)	Maui (H4)				
Retrofit in-stream dams	Reduce the volume		Promote adherence	Identify and protect				
to collect fine sediment	of treated		to State of Hawaii	species with ecological				
(WMP1, WMP2	wastewater injected		catch sizes and bag	traits characteristic of				
	into groundwater		limits[CAP] <i>(H1, H3)</i>	low sensitivity and high				
	through reuse			adaptive capacity to				
	(WMP3)			climate impacts (H4)				
Manage watershed	Reduce the volume		Support fishing	Replicate habitat types				
inputs to reef areas	of treated		rules and	in multiple, designated				
upstream of target reef	wastewater injected		regulations on	managed areas to spread				
within the dominant	into groundwater		fishing based on	risks associated with				
current flow (WMP1,	through treatment		target species	coral bleaching (H4)				
WMP2)	upgrades (WMP3)		ecology and life					
			history [CAP] (H1,					
			H3)					
Reduce nutrient loads			Protect spawning	Identify and protect				
from soil runoff using			aggregation sites of	current and future areas				
timed and quantified			herbivorous	that are resistant to				
amounts of fertilizers			fisheries through	climate change effects				
from agricultural and			seasonal fishing	due to localized				
landscaped areas			restrictions (H1, H3)	upwelling (H4)				
(WMP1, WMP2)								
Reduce sediment loads			Protect aquarium	Protect areas of high				
from soil runoff using			fish species through	coral species diversity				
rain gardens (WMP1,			species or catch	and cover using no-				


Climate-Smart Design Tool

Option Type	Option	Stressor being addressed with option	Specific climate change impact on stressor	Direction of CC impact on stressor	Magnitude of CC impact on stressor (1, 2, 3)	How/when/wh ere do we need to adapt option?	Adaptation potential of option (1, 2, 3)	Time constraint (longer or shorter term)	Notes
Run-off controls	Install water bars, terraces, microbasins, in dirt roads in agricultural areas	sediment/ nutrients	Due to storm events after dry period	variable	2	Need to adapt the option spatially (but may never be possible?); need to evaluate the extreme scenarios	3	short term option/urgency -uncertain of increase-need to think about mechanism	Life of these practices is only about 5-10 yrs. Rainfall in WM generally expect to increas, but John Marra thinks it might decrease
Water treatment upgrades	Address Eliminate cesspools and upgrade septic systems tanks	nutrients	SLR modified by storm regime (inundation); interaction with groundwater table	up	1	Upgrade occurs at time of sale	1	Septic just chipping away at the problem, no 1 silver bullet (a synergy issue, needs lots of little actions), i.e. a composite solution needed	Life cycle is 30 years; climate change concerns with SLR go into design considerations; problem should go down with time; this alone would not solve problem, will have to be a composite with other things
Area based management	Protect and manage adjacent (olowalu) or nearby coral reef areas that are connected hydrodynamically and can serve as recruitment sources for coral reefs in West Maui	hydrodyna mically connected areas	sea surface temps; acidification; disease; changes in currents	up	1	Need to further prioritize, replicate, represent and increase level of protection; at greater scale	3		Reef deterioration; a great deal will hinge on research as to sources and sinks

Grand Challenges

- Spatial and temporal scales
- Synergies, interdependencies, and conflicts among options
- Multiple levels of management planning

Next Steps

- Refinement of Climate-Smart Design Tool and expansion to include temporal scale and synergies
- Technical team meeting (March 2015), presentation at National Adaptation Forum (May 2015), webinar for workshop participants/ other stakeholders (June 2015)
- Case study write-up and tool to be posted on The Nature Conservancy's Reef Resilience website (Late 2015)

Special Thanks

Wendy Wiltse (EPA Region 9) Hudson Slay (EPA Region 9) (DOI) Karen Koltes

Rob Parsons

Tova Callender (West Maui R2R Initiative) Emma Anders (Hawaii DLNR) (Maui County Office of the Mayor)

